Synthesis and properties of self‐healing hydrogel plugging agent

Author:

Bai Xiaodong1ORCID,Wang Moubo1,Chen Yu1,Wu Lianci1,Yu Jingya1,Luo Yumei1

Affiliation:

1. School of New Energy and Materials Southwest Petroleum University Chengdu China

Abstract

AbstractThe P(AM‐co‐AMPS)/SA DN hydrogel was synthesized through aqueous polymerization in this study. It formed a crosslinking network with hydrophobic associations between acrylamide (AM) and lauryl methacrylate (LMA), as well as an ionic bond network involving sodium alginate and Ca2+. To enhance its high‐temperature resistance, 2‐acrylamide‐2‐methylpropane sulfonic acid (AMPS) was incorporated into the hydrogel formulation. The structure of the hydrogel was characterized using Fourier transform infrared spectrometer (FTIR), thermogravimetric analyzer (TGA), and scanning electron microscopy (SEM) techniques. Results demonstrated that the hydrogel exhibited excellent temperature resistance and possessed a porous structure. Mechanical testing revealed a high tensile strength of 110 kPa, elongation at break of 995.31%, along with good fatigue resistance and self‐recovery performance during multiple cyclic stretching. Healing experiments indicated that the healing strength of the hydrogel was influenced by temperature variations. Furthermore, pressure plugging tests were conducted on steel models with crack widths of 0.5 and 1 mm, respectively; it was found that the 0.8%P(AM‐co‐AMPS)/SA DN hydrogel could withstand pressures up to 4.5 MPa at a temperature of 70°C. This novel hydrogel material exhibits remarkable mechanical properties along with certain self‐healing capabilities, making it suitable for leak control applications.

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3