Parameter robust higher‐order finite difference method for convection‐diffusion problem with time delay

Author:

Sahoo Sanjay Ku1,Gupta Vikas1ORCID

Affiliation:

1. Centre for Mathematical & Financial Computing, Department of Mathematics The LNM Institute of Information Technology Jaipur India

Abstract

AbstractThis paper deals with the study of a higher‐order numerical approximation for a class of singularly perturbed convection‐diffusion problems with time delay. The method combines a higher‐Order Difference with an Identity Expansion (HODIE) scheme over a piece‐wise uniform mesh in the spatial direction and the backward Euler method on a uniform mesh for discretization in the temporal direction. A priori bounds for the continuous solution and its derivatives are derived by splitting the solution into regular and singular components. These bounds are useful in the error analysis of the proposed scheme. The present scheme converges ‐uniformly with the order of convergence one in time and almost second‐order in space direction. Further, to increase the rate of convergence in the time variable, we implemented the Richardson extrapolation technique. Thus, finally, the resultant scheme with Richardson extrapolation in time becomes almost second‐order ‐uniformly convergent in both the space and time variable. The detailed stability and convergence analysis have been done using the derived a priori estimates. We consider three test problems to validate the predicted theory and show that numerical results are in good agreement with our theoretical findings.

Publisher

Wiley

Subject

Applied Mathematics,Computational Mathematics,Numerical Analysis,Analysis

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3