A positivity preserving high‐order finite difference method for compressible two‐fluid flows

Author:

Boe Daniel1,Shahbazi Khosro1ORCID

Affiliation:

1. Department of Mechanical Engineering South Dakota School of Mines & Technology Rapid City South Dakota USA

Abstract

AbstractAny robust computational scheme for compressible flows must retain the hyperbolicity property or the real‐valued sound speed. Failure to maintain hyperbolicity, or the positivity of the square of the speed of sound, causes nonphysical distortions and the blow‐up of numerical simulations. Strong shock waves and interfacial discontinuities are ubiquitous features of the two‐fluid compressible dynamics that can potentially induce positivity‐related failure in a simulation. This article presents a positivity‐preserving algorithm for a high‐order, primitive variable‐based, weighted essentially non‐oscillatory finite difference scheme. The positivity preservation relies on a flux limiting technique that locally adapts high‐order fluxes towards the first order to retain the physical bounds of the solution without loss of high‐order convergence. This positivity preserving scheme has been devised and implemented up to eleventh order in one and two dimensions for a two‐fluid compressible model that consists of a single mass, momentum, and energy equations, as well as an advection of material parameters for capturing the interfaces. Several one‐ and two‐dimensional challenging test problems verify the performance. The scheme effectively retains high order accuracy while allowing for the simulation of several challenging problems that otherwise could not be successfully solved using the base scheme, without any penalty on the CFL condition requirement, and without any significant impact on the CPU times. The scheme represents the first high‐order (up to 11‐order) hyperbolicity‐preserving scheme for the considered two‐fluid compressible flows in the fully Eulerian formulation. The inherent efficiency of finite differences and the new robust positivity preserving quality enable modeling other challenging problems of two‐fluid and two‐phase problems.

Funder

Office of Naval Research

Publisher

Wiley

Subject

Applied Mathematics,Computational Mathematics,Numerical Analysis,Analysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3