Energy stability of exponential time differencing schemes for the nonlocal Cahn‐Hilliard equation

Author:

Zhou Quan1,Sun Yabing1ORCID

Affiliation:

1. College of Science National University of Defense Technology Changsha China

Abstract

AbstractThe nonlocal Cahn‐Hilliard equation has attracted much attention these years. Despite the advantage of describing more practical phenomena for modeling phase transitions of microstructures in materials, the nonlocal operator in the equation brings a lot of extra computational costs compared with the local Cahn‐Hilliard equation. Thus high order time integration schemes are needed in numerical simulations. In this paper, we propose two classes of exponential time differencing (ETD) schemes for solving the nonlocal Cahn‐Hilliard equation. We first use the Fourier collocation method to discretize the spatial domain, and then the ETD‐based multistep and Runge‐Kutta schemes are adopted for the time integration. In particular, some specific multistep and Runge‐Kutta schemes up to fourth order are constructed. We rigorously establish the energy stabilities of the multistep schemes up to fourth order and the second order Runge‐Kutta scheme, which show that the first order ETD and the second order Runge‐Kutta schemes unconditionally decrease the original energy. We also theoretically prove the mass conservations of the proposed schemes. Several numerical experiments in two and three dimensions are carried out to test the temporal convergence rates of the schemes and to verify their mass conservations and energy stabilities. The long time simulations of coarsening dynamics are also performed to verify the power law for the energy decay.

Funder

China Postdoctoral Science Foundation

National Natural Science Foundation of China

Publisher

Wiley

Subject

Applied Mathematics,Computational Mathematics,Numerical Analysis,Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3