Reliable quantized sampled‐data LFC for semi‐Markov jump interconnected multi‐area power systems: Dealing with incomplete TRs

Author:

Li Yulong1,Li Xiaoqing1ORCID,Cheng Jun2,Shi Kaibo3,Qiu Kun1

Affiliation:

1. School of Electrical Engineering and Automation Hefei University of Technology Hefei China

2. College of Mathematics and Statistics Guangxi Normal University Guilin China

3. School of Information Science and Engineering Chengdu University Chengdu China

Abstract

AbstractThis article aims to address the reliable quantized sampled‐data load frequency control (LFC) synthesis problem for semi‐Markov jump interconnected multi‐area power systems (IMAPSs) suffering from incomplete transition rates (TRs) and actuator failures. Primarily, the semi‐Markov process configurated with incomplete TRs is utilized to model the structural and coefficient switchings of IMAPSs, which enables a more precise representation of reality and a wider range of application. Subsequently, in order to reduce the control cost and facilitate data processing, an aperiodic quantization sampling mechanism is introduced. Furthermore, a mode‐dependent and comprehensive actuator faulty model is scheduled to portray various stochastically occurring actuator failures, which is more in line with practical application. Then, by fully utilizing the state information of sampled intervals, a two‐sided looped functional with some matrices that are not required to be strictly positive is constructed to enhance the flexibility. In what follows, on the basis of stochastic analysis technique and looped functional, sufficient conditions with two scenarios are established in the form of linear matrix inequalities (LMIs) to guarantee the stochastic stability with an performance of the resultant semi‐Markov jump IMAPSs. Finally, the effectiveness of the proposed control synthesis methodology is validated through a numerical simulation.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Mechanical Engineering,Aerospace Engineering,Biomedical Engineering,General Chemical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3