P‐1.9: Enhanced Stability Under Positive Bias Temperature Stress of Ln‐Doped InZnO Thin Film Transistors Fabricated with Back‐channel‐etch Structure

Author:

Xiao Juncheng1,Ge Shimin1,Jiang Zhixiong2,Yuan Dong2,Liang Ce2,Xu Miao3,Li Shan2,Xu Hongyuan1,Zhang Shengdong1

Affiliation:

1. Peking University Shenzhen Graduate School Shenzhen Guangdong China

2. TCL China Star Optoelectronics Technology Co., Ltd. Shenzhen Guangdong China

3. Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou Guangdong China

Abstract

Lanthanide‐doped indium zinc oxide (Ln‐IZO) was employed as the active channel layer (ACT) of thin film transistors (TFTs). The, Ln‐IZO, single‐1 ACT‐based TFT exhibited a high mobility and a small threshold voltage shift (∆VTH) within −1 V after 1‐hour negative bias temperature illumination stress (NBTIS). However, the corresponding ∆ VTH of 1‐hour positive bias temperature stress (PBTS) was as large as over 8 V. Optimized stacked structures of the ACT were adopted and obtained a significantly improved stability of PBTS. TFTs based on double‐2 ACT (Ln‐IZO/IGZO‐1) and triple‐2 ACT (Ln‐IZO/IGZO‐1/IGZO‐2) exhibited significantly lower ∆VTHs of 1.79 and 1.62 V under PBTS, respectively. Meanwhile, the excellent NBTIS stability with ∆VTH within −1 V was maintained for both double‐2‐ and triple‐2‐based TFTs. Furthermore, an appreciated VTH uniformity was obtained for triple‐2‐based TFTs, with a narrow range width of only 0.5 V. At the same time, we proposed a PBTS fitting model, using the stretched power‐law function, ∆ VTH = kTr for the deterioration of Ln‐oxide TFTs under long‐term operation. According to the proposed model, the ∆VTH could be maintained within 6 V even after 200‐hour PBTS for TFT based on triple‐2.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3