60‐3: Functional Study of High‐Transparency Encapsulation Films Based on Inkjet Printing Technology

Author:

Yang C. Y.12,Hong H. B.2,Zhang D. L.2,Fan H1

Affiliation:

1. College of Chemical and Biological Engineering Zhejiang University China

2. Hangzhou First Applied Material Co., Ltd China

Abstract

Display devices are more and more widely used in mobile devices and wearable devices, which put forward higher lightweight requirements for display devices. The thin film encapsulation (TFE) technology for display panels has emerged. Through the combination of inorganic and organic films, the thin film encapsulation films can provide 10‐6 levels of water vapor barrier ability at the thickness of micrometers, helping the display devices to realize the dual role of lightweight and long lifetime. Organic encapsulation layers prepared by inkjet printing technique with acrylate composition and epoxy composition are commonly used materials in mass production process, which can effectively improve the barrier properties and softness of thin film encapsulation. However, to prepare organic encapsulation films in line with mass production process, it is necessary to achieve high light transmittance, high aging resistance, ultra‐fast curing rate, low volatile level and other functions. In this paper, from the materials perspective of inkjet printing ink, we’ve studied how to realize the multifunctionality of organic encapsulation films through the combination of ink components and the configuration of functional groups, so as to provide reference for the downstream device preparation of organic encapsulation films.By reducing the content of chromogenesis impurities, both acrylic and epoxy based films can achieve high light transmittance (see Fig.8) using inkjet printing film formation method, and the transmittance of visible light (400nm‐800nm) can reach more than 98%. Controlling curing degree above 95% can result in good aging performance (see Table 5&6), and a very low volatile level. (see Fig. 3).

Publisher

Wiley

Reference6 articles.

1. Stability of Organic Light-Emitting Device[J];Zhang X W;Acta Phys. Sin.,2012

2. Research on Encapsulation Technology of Organic Light-Emitting Devices (OLED) [J];Li B;Application of Electronic Components,2011

3. P‐171: The Mechanism of the OLED Reliability Failure for Thin Film Encapsulation in Lateral Direction

4. Stress-matched laminated thin film of SiOxNy/SiO2/SiOxNy for enhanced encapsulation of organic light-emitting devices[J];CHEN Z;Optics Express,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3