Enhancing the sensitivity of nanopipette biosensors for protein analysis

Author:

Demirtas Mustafa1ORCID

Affiliation:

1. Department of Electrical and Electronics Engineering Bursa Uludağ University Bursa Türkiye

Abstract

AbstractBackgroundThis paper compares experimental findings and simulation outcomes of single and multiple protein models moving through a nanopipette biosensor. It provides insights into the factors influencing the process and explores their relevance to proteomics.MethodsNanopipette biosensors were produced by pulling borosilicate glass tubes and treating them with an electron beam. A scanning electron microscope was used to characterize the nanopipettes. The study measured and modeled ionic currents for the elastase‐specific inhibitor protein. Simulation models were developed using the finite element method and Poisson–Boltzmann formalism, considering different protein configurations and translocation scenarios.ResultsThe results showed that the pore current of a nanopipette decreases as the protein approaches the nanopipette. The minimum pore current occurs at the widest part of the protein, and the current increases as the protein progresses through the nanopipette. For multiple protein translocations, the pore current decreases between the widest parts of the first and second proteins, and the lowest current is observed at the broadest part of the second protein. After the third protein, the pore current remains constant. It is also found that the fractional blockade difference, translocation speed, fluctuation in pore current, and dwell time are all affected by the number of proteins translocating through the nanopipette. The fractional blockade difference, the decrease in pore current caused by the protein, increases with the number of proteins while the translocation speed decreases. The fluctuation in pore current and dwell time is also longer for three‐protein translocations than for single‐protein translocations.ConclusionThis study offers valuable insights into biomolecule transport through nanopipettes, enhances our understanding of protein dynamics in restricted environments, and significantly contributes to single‐protein sequencing studies, drug screening, and proteomics.

Publisher

Wiley

Subject

Behavioral Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3