Design of a bioaugmented soil aquifer treatment for efficient removal of p‐nitrophenol

Author:

Shi Min12,Yang Yuesuo12,Lu Ying12ORCID,Zhang Xi3,Shi Jinyu12

Affiliation:

1. Key Laboratory of Groundwater Resources and Environment (Jilin Univ.), Ministry of Education Changchun 130021 China

2. Jilin Provincial Key Laboratory of Water Resources and Environment Jilin Univ. Changchun 130021 China

3. School of Water Conservancy and Civil Engineering Northeast Agricultural Univ. Harbin 150030 China

Abstract

AbstractSecondary effluent reclamation and reuse is an effective solution to the water shortage problem, and the safety of reused water is a matter of increasing concern. p‐Nitrophenol (PNP), a common secondary effluent pollutant, can be efficiently removed using the eco‐friendly bioaugmented soil aquifer treatment (SAT) system at the laboratory scale. In this study, a sewage treatment plant in Changchun was selected as a case study to apply the bioaugmented SAT system for field scenarios efficiently. The bioaugmented SAT system was simulated using HYDRUS‐1D code. Biodegradation and adsorption coefficient were conducted from the batch experiment. Based on the degradation experiments, the concentration of bacteria injected into SAT system was designed to be 6 × 1018 colony‐forming units (CFU) m−3. To enhance the efficiency of the bioaugmented SAT system, the key parameters were optimized based on the sensitivity analysis and the response surface methodology, which showed that the optimal operating conditions were an initial concentration of 86.11 mg L−1, a medium of 4.27‐m thickness, and a wet/dry ratio of 0.28. Specifically, alternated wetting–drying conditions and increasing the medium thickness reduced PNP within a specific range. This work demonstrates the performance and applicability of the bioaugmented SAT system for removal PNP in secondary sewage effluent.

Publisher

Wiley

Subject

Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3