Microbial and solute transport through intact vadose zone cores of heterogeneous alluvial gravel under variably saturated conditions

Author:

Banasiak Laura J.1,Weaver Louise1,Humphries Bronwyn1,Dann Rod1,Blaurock Martina2,Gosses Moritz2,Pang Liping1,Close Murray1

Affiliation:

1. Health & Environment Business Group Institute of Environmental Science and Research Ltd Christchurch New Zealand

2. Hochschule Weihenstephan‐Triesdorf University of Applied Sciences Abteilung Triesdorf Weidenbach Germany

Abstract

AbstractThe movement of bacterial and viral pathogens through soil and vadose zone and subsequently into groundwater is a major public health concern. There are relatively few studies on the transport and fate of microbes through variably saturated vadose zone media compared with their transport in the soil and saturated groundwater zones. In this study, we investigated the transport of Escherichia coli, F‐RNA bacteriophage MS2, and a conservative solute tracer bromide through three intact vadose zone cores, under saturated (discharge rate ∼100 mm h−1) and unsaturated (discharge rate 10 and 0.5 mm h−1) flow conditions. The vadose zone media were sandy gravel overlying a sand lens in core 1, a heterogeneous SG mix in core 2, and SG with an open framework gravel lens through the middle of the core in core 3. The three flow regimes resulted in different transport characteristics through each of the cores. As expected, microbial transport through all cores was higher under saturated conditions, compared with unsaturated conditions. Overall, E. coli removal was consistently greater than that of MS2 phage irrespective of core media or flow conditions. There were relatively minor removals (factors of 1–2.5) of both microbes under saturated conditions, reductions of 2–3 orders of magnitude under the high flow unsaturated conditions, and almost complete removal (4 to >5 orders of magnitude) under the low flow unsaturated conditions. The much greater removal of microbes under unsaturated conditions has significant implications and potential benefits for land management decisions.

Publisher

Wiley

Subject

Soil Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3