The role of forensic science in the generation of intelligence to address environmental water contamination problems

Author:

Estoppey Nicolas12ORCID,Pfeiffer Fabienne2ORCID,Glanzmann Vick2ORCID,Reymond Naomi2ORCID,Tascon Ines2ORCID,Huisman Sofie2ORCID,Lacour William23,Ribaux Olivier2ORCID,Weyermann Céline2ORCID

Affiliation:

1. Norwegian Geotechnical Institute (NGI) Oslo Norway

2. School of Criminal Justice University of Lausanne Lausanne Switzerland

3. Office de la Consommation (OFCO) Epalinges Switzerland

Abstract

AbstractWater contamination is a growing concern in society. New environmental laws are being enacted to define intolerable human activities, and their enforcement is increasingly supported by forensic science. However, water contamination is a broader security issue that is not only caused by illegal human behavior. Risk‐based approaches are needed to prevent (re)occurrence of incidents and minimize their negative consequences. This can be achieved through the formalization of a monitoring process producing intelligence (i.e., actionable knowledge), crucial to detect recurring incidents, and guiding decision‐makers in their choice of preventive and responsive actions. In this perspective, forensic science has a key role to play in integrating vestiges from water‐contaminating activities (i.e., traces) in such a problem‐solving process. Information conveyed by traces allows detecting similarities among contamination events (i.e., patterns), inferring common causes, and better understanding of mechanisms and consequences of water contamination. The different stages of the process will be described and illustrated through a real case example. Current barriers to the implementation of such a process are then discussed, showing how systemic issues and complexity may prevent the establishment of links across contamination events, thus negatively impacting the generation of intelligence. To overcome these obstacles, we underline the importance to initiate local and size‐limited approaches by implementing relatively simple and flexible systems. New knowledge can be used to improve local situations and help stakeholders to understand the benefits of such a process; then, by a bottom‐up iterative learning process, the approach can be given a greater ambition at a larger scale.This article is categorized under: Forensic Science in Action/Crime Scene Investigation > Special Situations and Investigations Crime Scene Investigation > From Traces to Intelligence and Evidence Forensic Chemistry and Trace Evidence > Forensic Food and Environment Analysis

Publisher

Wiley

Subject

General Engineering

Reference151 articles.

1. Inference structures for crime analysis and intelligence: the example of burglary using forensic science data

2. Walsh S. J.(2009).Evaluating the role and impact of forensic DNA profiling on key areas of the criminal justice system [University of Technology Sydney].https://opus.lib.uts.edu.au/handle/10453/34080

3. Institutions Affecting the Urban Water Environment

4. Legal Framework for the Urban Water Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3