Depolymerization of actin filaments by Cucurbitacin I through binding G‐actin

Author:

Haciosmanoglu Aldogan Ebru1ORCID,Önsü Kemal Alper2,Saylan Cemil Can3,Günçer Başak2,Baday Sefer4,Bektaş Muhammet2

Affiliation:

1. Department of Biophysics, Faculty of Medicine Bezmialem Vakif University Istanbul Turkey

2. Department of Biophysics, Istanbul Faculty of Medicine Istanbul University Istanbul Turkey

3. Chair of Experimental Bioinformatics, TUM School of Life Sciences Technical University of Munich Freising Germany

4. Applied Informatics Department, Informatics Institute Istanbul Technical University Istanbul Turkey

Abstract

AbstractCucurbitacins have high economic value as they are a major source of food and have pharmacological properties. Cucurbitacin I (CuI) is a plant‐derived natural tetracyclic triterpenoid compound that shows an anticancer effect via inhibiting the JAK2‐STAT3 signaling pathway. The actin cytoskeleton is the most abundant protein in cells and regulates critical events through reorganization in cells. In this study, it is aimed at determining the direct effect of CuI on actin dynamics. The fluorescence profile of G‐actin in the presence of CuI (1–200 nM) shifted to a higher temperature, suggesting that G‐actin binds CuI and that G‐actin–CuI is more thermally stable than the ligand‐free form. CuI dose‐dependently inhibited the polymerization of F‐actin in vitro and disrupted actin filaments in endothelial cells. Docking and MD simulations suggested that CuI binds to the binding site formed by residues I136, I175, D154, and A138 that are at the interface of monomers in F‐actin. The migration ability of cells treated with CuI for 24 h was significantly lower than the control group (p < .001). This study reveals the molecular mechanisms of CuI in the regulation of actin dynamics by binding G‐actin. More importantly, this study indicates a novel role of CuI as an actin‐targeting drug by binding directly to G‐actin and may contribute to the mode of action of CuI on anticancer activities.

Funder

Bilimsel Araştirma Projeleri Birimi, Istanbul Üniversitesi

Publisher

Wiley

Subject

Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3