Suppression of cAMP/PKA/CREB signaling ameliorates retinal injury in diabetic retinopathy

Author:

Fang Xiao‐Ling12,Zhang Qin3,Xue Wen‐Wen12,Tao Jin‐Hua12,Zou Hai‐Dong12,Lin Qiu‐Rong12,Wang Yu‐Lan12ORCID

Affiliation:

1. Department of Ophthalmology Shanghai Eye Diseases Prevention and Treatment Center, Shanghai Eye Hospital Shanghai China

2. National Clinical Research Center for Eye Diseases Shanghai Engineering Center for Visual Science and Photomedicine Shanghai China

3. Department of Ophthalmology Jing'an District Central Hospital Shanghai China

Abstract

AbstractThe blood‐retinal barrier (BRB), homeostasis, neuronal integrity, and metabolic processes are all directly influenced by Müller cells, the most important retinal glial cells. We isolated primary Müller cells from Sprague–Dawley (SD) neonatal rats and treated them with glucose at varying doses. CCK‐8 was used to quantify cellular viability, and a TUNEL assay was performed to detect cell apoptosis. ELISA, immunofluorescence, and western blotting were used to assess cAMP/PKA/CREB signaling, Kir4.1, AQP4, GFAP, and VEGF levels, respectively. H&E staining was used to examine histopathological alterations in diabetic retinopathy (DR)‐affected retinal tissue in rats. As glucose concentration increases, gliosis of Müller cells became apparent, as evidenced by a decline in cell activity, an increase in apoptosis, downregulation of Kir4.1 level, and overexpression of GFAP, AQP4, and VEGF. Treatments with low, intermediate, and high glucose levels led to aberrant activation of cAMP/PKA/CREB signaling. Interestingly, blocking cAMP and PKA reduced high glucose‐induced Müller cell damage and gliosis by a significant amount. Further in vivo results suggested that cAMP or PKA inhibition significantly improved edema, bleeding, and retinal disorders. Our findings showed that high glucose exacerbated Müller cell damage and gliosis via a mechanism involving cAMP/PKA/CREB signaling.

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3