Bayesian optimization algorithm‐based Gaussian process regression for in situ state of health prediction of minorly deformed lithium‐ion battery

Author:

Liu Qi1,Bao Xubin1,Guo Dandan2,Li Ling13ORCID

Affiliation:

1. Department of Mechanical Engineering Ningbo University of Technology Ningbo China

2. Geely Automobile Research Institute (Ningbo) Co., Ltd Ningbo China

3. Vehicle Energy and Safety Laboratory Ningbo University of Technology Ningbo China

Abstract

AbstractAccurate on‐board state‐of‐health (SOH) prediction is crucial for lithium‐ion battery applications. This study presents an in situ prediction technique for minorly deformed battery SOH, utilizing a Gaussian process regression (GPR) model tuned by a Bayesian optimization algorithm. Unlike previous methods that interpret voltage–time data as incremental capacitance curves, our approach directly operates on raw voltage–time data. We apply gray relational analysis to select feature variables as inputs and train the Bayesian Gaussian process regression (BGPR) model using experimental data from batteries under different working conditions. To demonstrate the performance of the BGPR model, we compare it with stepwise linear regression, neural network, and Bayesian support vector machine (BSVM) models. The performance of these four models is evaluated using different performance indicators: mean absolute percentage error (MAPE), root‐mean‐squared percentage error (RMSPE), and coefficient of determination (R²). The results demonstrate that the BGPR model exhibits superior prediction performance with the lowest MAPE (0.11%), RMSPE (0.12%), and the highest R² (0.9915) for minorly deformed batteries. Furthermore, the BGPR model exhibits excellent robustness for SOH prediction of normal batteries under different conditions. This study provides an effective and robust method for accurate on‐board SOH prediction in lithium‐ion battery applications.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3