Thermodynamic evaluation of a novel renewable energy system that simultaneously provides electricity, freshwater, and syngas using a multiobjective optimization approach

Author:

Naderihagh Mehrdad1ORCID,Ahmadi Abolfazl1ORCID

Affiliation:

1. Department of Energy Systems Engineering Iran University of Science and Technology Tehran Iran

Abstract

AbstractThis research entails the simulation and thermodynamic evaluation of a combined solar‐powered system that is intended to achieve the energy necessary to construct factories in areas where other sources of energy are not available. The system comprises five major circuits: (1) a parabolic trough that collects solar energy and passes it to downstream circuits via an evaporator, (2) an organic Rankine cycle that generates electricity for devices and factories, (3) a proton exchange membrane electrolysis unit that produces hydrogen from pure water, (4) a methanation unit that produces gas by combining hydrogen and carbon dioxide, and (5) a reverse osmosis (RO) unit that purges seawater to produce freshwater. This investigation studies the efficiency of energy and exergy, the destruction rate of exergy, and the economic value of system components as a whole. The system is represented by the technical equation solver, and the results are obtained as a result. This research employs the genetic algorithm and Technique for Order of Preference by Similarity to Ideal Solution method to locate the most effective point. The achieved outcomes include a maximum total system efficiency of 54.935% and a minimum total cost of 2.578 $/GJ. Dated to the optimal point, the power generated is 305.5 kW, the required power of a single‐cell electrolyzer is 293.8 W, the mass flow rate of methane and hydrogen production is 448.92 and 225.64 kg/h, respectively. The water volume generated by RO is 35.25 m3/h, and the total cost of the investment is 85.57 $/h.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3