Feasibility study of the high‐temperature organic Rankine cycle in combined heat and power state from energy, exergy, and economic point of view

Author:

Ehyaei Mehdi Ali12ORCID,Heberle Florian1,Brüggemann Dieter1

Affiliation:

1. Department of Engineering Thermodynamics and Transport Processes (LTTT), Center of Energy Technology (ZET) University of Bayreuth Bayreuth Germany

2. Department of Mechanical Engineering, Pardis Branch Islamic Azad University Pardis New City Iran

Abstract

AbstractThe organic Rankine cycle (ORC) has received a lot of attention in recent years due to its wide application in energy recovery and the use of low‐temperature energy sources. In this article, the energy, exergy, and economic analyses of a high‐temperature ORC (HTORC) in combined heat and power production mode have been performed. In this system, the heating water at 90°C for domestic or industrial purposes is provided in the HTORC condenser. Two working fluids, hexamethyldisiloxane (MM) and siloxane mixture (MDM), have been evaluated and compared in HTORC. The system has been modeled in engineering equation solver software and key parameters such as energy efficiency and exergy of the system, output power, heat‐to‐power ratio, and levelized cost of electricity (LCOE) have been calculated. The energy and exergy efficiency of the system for the two working fluids MM and MDM are equal to 40.8%, 45.6%, 22.45%, and 19.3%, respectively. From the point of view of energy and exergy, the working fluid MM performs better. The LCOE of the system with MM working fluid is equal to 0.5946 US$/kWh, which is slightly higher than MDM working fluid (0.5702 US$/kWh).

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3