Accurate machine‐specific reference and small‐field dosimetry for a self‐shielded neuro‐radiosurgical system

Author:

Jermain Peter R.1,Muir Bryan2,McEwen Malcolm2,Niu Ying1,Pang Dalong1

Affiliation:

1. Department of Radiation Medicine Medstar Georgetown University Hospital Washington District of Columbia USA

2. Metrology Research Centre National Research Council Ottawa Ontario Canada

Abstract

AbstractBackgroundThe newly available ZAP‐X stereotactic radiosurgical system is designed for the treatment of intracranial lesions, with several unique features that include a self‐shielding, gyroscopic gantry, wheel collimation, non‐orthogonal kV imaging, short source‐axis distance, and low‐energy megavoltage beam. Systematic characterization of its radiation as well as other properties is imperative to ensure its safe and effective clinical application.PurposeTo accurately determine the radiation output of the ZAP‐X with a special focus on the smaller diameter cones and an aim to provide useful recommendations on quantification of small field dosimetry.MethodsSix different types of detectors were used to measure relative output factors at field sizes ranging from 4 to 25 mm, including the PTW microSilicon and microdiamond diodes, Exradin W2 plastic scintillator, Exradin A16 and A1SL ionization chambers, and the alanine dosimeter. The 25 mm cone served as the reference field size. Absolute dose was determined with both TG‐51‐based dosimetry using a calibrated PTW Semiflex ion chamber and measurements using alanine dosimeters.ResultsThe average radiation output factors (maximum deviation from the average) measured with the microDiamond, microSilicon, and W2 detectors were: for the 4 mm cone, 0.741 (1.0%); for the 5 mm cone: 0.817 (1.0%); for the 7.5 mm cone: 0.908 (1.0%); for the 10 mm cone: 0.946 (0.4%); for the 12.5 mm cone: 0.964 (0.2%); for the 15 mm cone: 0.976 (0.1%); for the 20 mm cone: 0.990 (0.1%). For field sizes larger than 10 mm, the A1SL and A16 micro‐chambers also yielded consistent output factors within 1.5% of those obtained using the microSilicon, microdiamond, and W2 detectors. The absolute dose measurement obtained with alanine was within 1.2%, consistent with combined uncertainties, compared to the PTW Semiflex chamber for the 25 mm reference cone.ConclusionFor field sizes less than 10 mm, the microSilicon diode, microDiamond detector, and W2 scintillator are suitable devices for accurate small field dosimetry of the ZAP‐X system. For larger fields, the A1SL and A16 micro‐chambers can also be used. Furthermore, alanine dosimetry can be an accurate verification of reference and absolute dose typically measured with ion chambers. Use of multiple suitable detectors and uncertainty analyses were recommended for reliable determination of small field radiation outputs.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3