Modal identification with uncertainty quantification of large‐scale civil structures via a hybrid operation modal analysis framework

Author:

Sun Mengmeng1,Li Qiusheng23ORCID

Affiliation:

1. School of Civil Engineering Central South University Changsha China

2. Department of Architecture and Civil Engineering City University of Hong Kong Hong Kong

3. Architecture and Civil Engineering Research Center City University of Hong Kong, Shenzhen Research Institute Shenzhen China

Abstract

SummaryIn operational modal analysis (OMA), only structural responses are typically available. In this context, bias and variance (uncertainty) errors may exist in modal estimates (especially damping estimates), resulting in inaccurate determination of the modal properties of large‐scale structures under harsh excitations. To this end, a hybrid OMA framework based on the modal decoupling, the natural excitation technique, the random decrement technique (RDT), and improved eigensystem realization algorithm (ERA) with the automated stabilization diagram is presented to perform high‐accuracy modal estimates with uncertainty quantification for large‐scale structures under normal and severe ambient excitations. The accuracy and effectiveness of the hybrid framework for identifying the modal parameters are validated by numerical simulation study of a framework structural model. Furthermore, the hybrid framework is applied to analyze recorded acceleration responses of a supertall building with 600‐m height under normal excitations and typhoon condition to verify its applicability in field measurements. The numerical simulation and field measurement studies demonstrate that the hybrid framework can not only perform precise modal estimations with uncertainty quantification through a single ambient vibration measurement but also effectively reveal the variations of modal properties of supertall structures under harsh excitations from multiple perspectives. This paper aims to enhance the reliability and accuracy of modal estimation for engineering structures and further provide insight into the variations of dynamic properties of large‐scale civil structures under severe excitations.

Funder

City University of Hong Kong

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Unsupervised structural damage identification based on covariance matrix and deep clustering;The Structural Design of Tall and Special Buildings;2024-04-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3