The in situ treatment of PFAS within porewater at the air–water interface of a PFAS source zone

Author:

McGregor Rick1ORCID

Affiliation:

1. InSitu Remediation Services Ltd St George Ontario Canada

Abstract

AbstractThe treatment of per‐ and polyfluoroalkyl substances (PFAS) within groundwater is an emerging topic, with various technologies being researched and tested. Currently, PFAS‐impacted groundwater is typically treated ex situ using sorptive media such as activated carbon and ion exchange resin. Proven in situ remedial approaches for groundwater have been limited to colloidal activated carbon (CAC) injected into aquifers downgradient of the source zones. However, treatment of groundwater within the source zones has not been shown to be feasible to date. This study evaluated the use of CAC to treat dissolved PFAS at the air–water interface within the PFAS source zone. Studies have shown that PFAS tends to preferentially accumulate at the air–water interface due to the chemical properties of the various PFAS. This accumulation can act as a long‐term source for PFAS, thus making downgradient treatment of groundwater a long‐term requirement. A solution of CAC was injected at the air–water interface within the source zone at a site with PFAS contamination using direct push technology. A dense injection grid that targeted the interface between the air and groundwater was used to deliver the CAC. Concentrations of PFAS within the porewater and groundwater were collected using a series of nine lysimeters installed within the vadose and saturated water columns. A total of six PFAS were detected in the porewater and groundwater including perfluorobutanoic acid (PFBA), perfluoropentanoic acid (PFPeA), perfluorohexanoic acid (PFHxA), perfluoroheptanoic acid (PFHpA), perfluorooctanoic acid (PFOA), and perfluorononanoic acid (PFNA). Detectable concentrations of PFAS within the pore and groundwater before treatment ranged from values greater than 300 µg/L for PFPeA to less than 3 µg/L for PFNA. Following the injection of the CAC, monitoring of the porewater and groundwater for PFAS was conducted approximately 3, 6, 9, 12, and 18 months postinjection. The results indicated that the PFAS within the porewater and groundwater at and near the air–water interface was effectively attenuated over the 1.5‐year monitoring program, with PFAS concentrations being below the method detection limits of approximately 10 ng/L, with the exception of PFPeA, which was detected within the porewater during the 18‐month sampling event at concentrations of up to 55 ng/L. PFPeA is a five carbon‐chained PFAS that has been shown to have a lower affinity for sorption onto activated carbon compared to the longer carbon‐chained PFAS such as PFOA. Examination of aquifer cores in the zone of injection indicated that the total organic carbon concentration of the aquifer increased by five orders of magnitude postinjection, with 97% of the samples collected within the target injection area containing activated carbon, indicating that the CAC was successfully delivered into the source zone.

Publisher

Wiley

Subject

Pollution,Waste Management and Disposal,Environmental Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3