Morphology and thermal properties of poly(lactic acid)/poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate)/graphene oxide polymeric composites

Author:

Mokoena Lesia Sydney1ORCID,Mofokeng Julia Puseletso1ORCID

Affiliation:

1. Department of Chemistry University of the Free State (QwaQwa campus) Phuthaditjhaba South Africa

Abstract

AbstractPoly(lactic acid) (PLA)/poly (3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV) blends are typically phase‐separated, and there is limited research on using graphene oxide (GO) as their matrix filler. PLA/PHBV/GO composites using 1, 3, or 5 wt% GO were prepared by melt mixing, after which their morphology and thermal properties were determined. All the components were hydrophilic (Contact angles less than 90°), and the wetting coefficient value of 3.52 suggested that GO would be dispersed in PLA during surface energy evaluations (SEES). Scanning electron microscopy (SEM) showed that PLA/PHBV blends are immiscible and phase‐separated; however, adding GO brought partial miscibility. Differential scanning calorimetry (DSC) showed that GO plasticized the polymers at lower contents (1 wt%) and inhibited their crystallization at higher contents (3 and 5 wt%). Fourier‐transform infrared spectroscopy (FTIR) measurements showed that a chemical interaction exists between GO and the polymers, and X‐ray diffraction (XRD) results confirmed that GO inhibited crystallization in the polymers at high contents. Adding GO to the polymers generally improved the thermal stability of PLA, verifying the affinity thereof during thermogravimetric (TGA) analyses. Merging of the thermal degradation steps implied that GO induced partial miscibility on polymers. Concurrently, the polymers thermally masked the GO to prolong its lifespan. Composites with 1 wt% GO were the optimal and ideal materials.Highlights Melt mixed PLA/PHBV blends and their composites with GO as a filler. GO brought partial miscibility to the blends and favored the PLA phase. 1 wt% GO contents provide optimal thermal and morphological properties. 3 and 5 wt% GO contents form chemical bonds with the polymers. Initial GO loadings increase the crystallinity of the polymers.

Funder

National Research Foundation

Council for Scientific and Industrial Research, South Africa

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3