Chromium adsorption efficiency by functional polymeric nanocomposite membrane: A case study for environmental sustainability

Author:

Prabhakar Shanu1,Singh Jitendra Pratap1,Kumar Kamal2,Prasad Shiv Govind3,Roy Debmalya4ORCID

Affiliation:

1. Department of Textile Technology Uttar Pradesh Textile Technology Institute Kanpur Uttar Pradesh India

2. Technical Textile Division DMSRDE Kanpur Uttar Pradesh India

3. Department of Chemistry Uttar Pradesh Textile Technology Institute Kanpur Uttar Pradesh India

4. Nanoscience & Coating Division DMSRDE Kanpur Uttar Pradesh India

Abstract

AbstractWe have designed and developed nonwoven fabric supported electrospun polymeric nanofibrous‐based membrane for robust filtration system for ecological sustainability of clean water. The fabricated nanocomposites filters were tested for the removal of chromium (VI) toxic heavy metal ions from contaminated feedstock water. The interpenetrating network like morphological structure obtained from pure and composite nanofibers‐based membranes have been thoroughly investigated to understand the structure–properties of highly entangled system. It has been found that incorporating functional moieties onto nanocomposite membranes significantly impacts the absorption efficiency of toxic metals. The pore sizes of the hierarchical geometries have been varied to insight into its impact on flow rate and efficiency of filtration. The strategy of interfacing the multifunctional composite polyethylene terephthalate nanofiber membrane supported on nonwoven fabric to generate heterostructures has found to provide mechanically stable platform for efficient metal ion removal. It has been found by BET surface area analysis that the nanofibers reinforced with functional nanomaterials has controlled pore geometry compared to pristine PET electrospun nanofibers which lead to higher absorption of metal ions. We have highlighted the importance of mechanically stable electrospun polymeric nanofibers membrane‐based mitigation strategies to meet the huge demand of potable water for long‐term environmental sustainability.Highlights Mechanically toughened freestanding nanofibers mat supported on nonwoven fabric. Functionally upgrade nanofibers by incorporation of carbon based nanofillers. Controlled porosity by morphological optimization for removal of contaminates.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3