A probabilistic thermal dose model for the estimation of necrosis in MR‐guided tumor ablations

Author:

Schröer Simon12,Alpers Julian2,Gutberlet Marcel1,Brüsch Inga3,Rumpel Regina3,Wacker Frank1,Hensen Bennet1,Hansen Christian2

Affiliation:

1. Department of Diagnostic and Interventional Radiology Medical School Hanover Hanover Germany

2. Department of Simulation and Graphics Otto‐von‐Guericke‐University Magdeburg Germany

3. Department of Laboratory Animal Science Medical School Hanover Hanover Germany

Abstract

AbstractBackgroundMonitoring minimally invasive thermo ablation procedures using magnetic resonance (MR) thermometry allows therapy of tumors even close to critical anatomical structures. Unfortunately, intraoperative monitoring remains challenging due to the necessary accuracy and real‐time capability. One reason for this is the statistical error introduced by MR measurement, which causes the prediction of ablation zones to become inaccurate.PurposeIn this work, we derive a probabilistic model for the prediction of ablation zones during thermal ablation procedures based on the thermal damage model CEM43. By integrating the statistical error caused by MR measurement into the conventional prediction, we hope to reduce the amount of falsely classified voxels.MethodsThe probabilistic CEM43 model is empirically evaluated using a polyacrilamide gel phantom and three in‐vivo pig livers.ResultsThe results show a higher accuracy in three out of four data sets, with a relative difference in Sørensen–Dice coefficient from to 3.97% compared to the conventional model. Furthermore, the ablation zones predicted by the probabilistic model show a false positive rate with a relative decrease of 11.89%–30.04% compared to the conventional model.ConclusionThe presented probabilistic thermal dose model might help to prevent false classification of voxels within ablation zones. This could potentially result in an increased success rate for MR‐guided thermal ablation procedures. Future work may address additional error sources and a follow‐up study in a more realistic clinical context.

Funder

Bundesministerium für Bildung und Forschung

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3