Modeling the effects of selectively fishing key functional groups of herbivores on coral resilience

Author:

Cook Dana T.1ORCID,Schmitt Russell J.12ORCID,Holbrook Sally J.12ORCID,Moeller Holly V.1ORCID

Affiliation:

1. Department of Ecology, Evolution, and Marine Biology University of California Santa Barbara California USA

2. Marine Science Institute University of California Santa Barbara California USA

Abstract

AbstractMounting evidence suggests that fishing can be a major driver of coral‐to‐macroalgae regime shifts on tropical reefs. In many small‐scale coral reef fisheries, fishers target herbivorous fishes, which can weaken coral resilience via reduced herbivory on macroalgae that then outcompete corals. Previous models that explored the effects of harvesting herbivores revealed hysteresis in the herbivory–benthic state relationship that results in bistability of coral‐ and macroalgae‐dominated states over some levels of fishing pressure, which has been supported by empirical evidence. However, past models have not accounted for the functional differences among herbivores or how fisher selectivity for different herbivore functional groups may alter the benthic dynamics and resilience. Here, we use a dynamic model that links differential fishing on two key herbivore functional groups to the outcome of competitive dynamics between coral and macroalgae. We show that reef state depends not only on the level of fishing but also on the types of herbivores targeted by fishers. Selectively fishing browsing herbivores that are capable of consuming mature macroalgae (e.g., unicornfish) increases precariousness of the coral state by moving the system close to the coral‐to‐macroalgae tipping point. By contrast, selectively harvesting grazing herbivores that are only capable of preventing macroalgae from becoming established (e.g., parrotfishes) can increase catch yields substantially more before the tipping point is reached. However, this lower precariousness with increasing fishing effort comes at the cost of increasing the range of fishing effort over which coral and macroalgae are bistable; increasing hysteresis makes a regime shift triggered by a disturbance more difficult or impractical to reverse. Our results suggest that management strategies for small‐scale coral reef fisheries should consider how functional differences among harvested herbivores coupled with fisher selectivity influence benthic dynamics in light of the trade‐off between tipping point precariousness and coral recovery dynamics following large disturbances.

Funder

National Science Foundation

Publisher

Wiley

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3