Hyperglycolysis in endothelial cells drives endothelial injury and microvascular alterations in peritoneal dialysis

Author:

Si Zekun1,Su Wenyan1,Zhou Zhuoyu1,Li Jinjin1,Su Cailing1,Zhang Ying2,Hu Zuoyu1,Huang Zhijie1,Zhou Hong1,Cong Ansheng1,Zhou Zhanmei1,Cao Wei1ORCID

Affiliation:

1. Division of Nephrology State Key Laboratory of Organ Failure Research Guangdong Provincial Key Laboratory of Nephrology Guangdong Provincial Clinical Research Center for Kidney Disease Nanfang Hospital Southern Medical University Guangzhou P. R. China

2. Division of Nephrology The Second Affiliated Hospital of Guangzhou Medical University Guangzhou P. R. China

Abstract

AbstractBackgroundEndothelial cell (EC) dysfunction leading to microvascular alterations is a hallmark of technique failure in peritoneal dialysis (PD). However, the mechanisms underlying EC dysfunction in PD are poorly defined.MethodsWe combined RNA sequencing with metabolite set analysis to characterize the metabolic profile of peritoneal ECs from a mouse model of PD. This was combined with EC‐selective blockade of glycolysis by genetic or pharmacological inhibition of 6‐phosphofructo‐2‐kinase/fructose‐2,6‐biphosphatase 3 (PFKFB3) in vivo and in vitro. We also investigated the association between peritoneal EC glycolysis and microvascular alterations in human peritoneal samples from patients with end‐stage kidney disease (ESKD).ResultsIn a mouse model of PD, peritoneal ECs had a hyperglycolytic metabolism that shunts intermediates into nucleotide synthesis. Hyperglycolytic mouse peritoneal ECs displayed a unique active phenotype with increased proliferation, permeability and inflammation. The active phenotype of mouse peritoneal ECs can be recapitulated in human umbilical venous ECs and primary human peritoneal ECs by vascular endothelial growth factor that was released from high glucose‐treated mesothelial cells. Importantly, reduction of peritoneal EC glycolysis, via endothelial deficiency of the glycolytic activator PFKFB3, inhibited PD fluid‐induced increases in peritoneal capillary density, vascular permeability and monocyte extravasation, thereby protecting the peritoneum from the development of structural and functional damages. Mechanistically, endothelial PFKFB3 deficiency induced the protective effects in part by inhibiting cell proliferation, VE‐cadherin endocytosis and monocyte‐adhesion molecule expression. Pharmacological PFKFB3 blockade induced a similar therapeutic benefit in this PD model. Human peritoneal tissue from patients with ESKD also demonstrated evidence of increased EC PFKFB3 expression associated with microvascular alterations and peritoneal dysfunction.ConclusionsThese findings reveal a critical role of glycolysis in ECs in mediating the deterioration of peritoneal function and suggest that strategies targeting glycolysis in peritoneal ECs may be of therapeutic benefit for patients undergoing PD.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Wiley

Subject

Molecular Medicine,Medicine (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3