The biostimulatory effect of humic‐based soil amendment on plant growth, root nodulation, symbiotic nitrogen fixation and yield of field pea (Pisum sativum L.)

Author:

Rathor Pramod1,Upadhyay Punita1,Ullah Aman1,Warkentin Thomas D.2,Gorim Linda Yuya1,Thilakarathna Malinda S.1ORCID

Affiliation:

1. Department of Agricultural Food and Nutritional Science University of Alberta Edmonton Alberta Canada

2. Crop Development Centre University of Saskatchewan Saskatoon Saskatchewan Canada

Abstract

AbstractIntroductionPea is one of the most important pulse legumes globally due to its high protein, which is due to its ability to fix atmospheric nitrogen through a symbiotic relationship with nitrogen‐fixing rhizobia. Symbiotic nitrogen fixation (SNF) should be optimized to maximize nitrogen fixation and achieve higher yields with more grain protein. The use of humic‐based soil amendments in crop production has garnered considerable attention in recent years due to their biostimulatory effect in improving plant growth, yield, nutritional quality and soil health. This study examines the impact of a humic‐based soil amendment (Humalite) on root nodulation, SNF, plant growth, yield and grain protein of pea.Materials and MethodsChemical characterization was performed using Fourier transform infrared spectroscopy (FTIR). Pea plants inoculated with Rhizobia were grown in pots under greenhouse conditions with five different Humalite rates (0, 200, 400, 800 and 1600 kg ha−1). SNF capacity was assessed using the 15N‐isotope dilution method.ResultsFTIR analysis revealed the abundant presence of hydroxyl (‐OH) and carboxyl (‐CO) functional groups in Humalite. Plants treated with Humalite displayed augmented root traits [root length (21%–50%), root surface area (24%–51%), volume (26%–53%), average nodule weight (11%–91%)], plant biomass [shoots (13%–29%) and roots (29%–54%)], shoot nitrogen concentration (12%–33%), shoot total nitrogen content (38%–53%), percentage nitrogen derived from the atmosphere (8%–14%) and total shoot nitrogen fixed (48%–80%) compared to the control plants at the flowering stage. Furthermore, at seed maturity stage, plants treated with Humalite at 400 and 1600 kg ha−1 exhibited a significant increase in plant biomass (4%–14%), number of seeds (8%–16%), seed weight (3%–11%), seed nitrogen content (8%–20%) and total seed nitrogen fixed (7%–22%) compared to the control plants.ConclusionsThese findings demonstrate that humic‐based soil amendment can effectively enhance plant growth, root nodulation, SNF and seed yield, thereby supporting sustainable agricultural practices.

Funder

Natural Sciences and Engineering Research Council of Canada

Mitacs

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3