Affiliation:
1. University of Chinese Academy of Sciences Beijing China
2. State Key Laboratory of Drug Research Chinese Academy of Sciences Shanghai China
3. Innovation Research Institute of Traditional Chinese Medicine Shanghai University of Traditional Chinese Medicine Shanghai China
4. College of Pharmacy Jiangxi University of Traditional Chinese Medicine Nanchang China
5. State Key Laboratory of Drug Research & Natural Products Research Center Chinese Academy of Sciences Shanghai China
6. School of Life Science and Technology ShanghaiTech University Shanghai China
7. Zhongshan Institute for Drug Discovery Chinese Academy of Sciences Zhongshan China
8. Laboratory of Immunology and Virology Shanghai University of Traditional Chinese Medicine Shanghai China
Abstract
AbstractBackgroundUlcerative colitis (UC), a chronic inflammatory disease, is caused by abnormal immune system reactions resulting in inflammation and ulcers in the large intestine. Phillygenin (PHI) is a natural compound found in Forsythia suspensa (Thunb.) Vahl, which is known for its antipyretic, anti‐inflammatory, antiobesity, and other biological activities. However, the therapeutic role and molecular mechanisms of PHI on UC are still insufficiently researched.MethodsIn this study, dextran sulfate sodium (DSS) and 2.5% 2,4,6‐trinitro‐Benzenesulfonic acid (TNBS)‐induced acute UC were used to investigate the therapeutic effects of PHI. We evaluated the effects of PHI on disease activity index (DAI), body weight, mortality, intestinal mucosal barrier, cytokine secretion, and macrophage infiltration into colon tissue using various techniques such as flow cytometry, immunofluorescence, enzyme‐linked immunosorbent assay (ELISA), RT‐qPCR, and Western blot analysis.ResultsOur findings revealed that PHI has therapeutic properties in UC treatment. PHI was able to maintain body weight, reduce DAI and mortality, restore the intestinal mucosal barrier, and inhibit cytokine secretion. Flow cytometry assay and immunofluorescence indicated that PHI reduces macrophage infiltration into colon tissue. Mechanistically, PHI may exert anti‐inflammatory effects by downregulating the TLR4/MyD88/NF‐κB pathway and inhibiting the activation of NLRP3 inflammasome.ConclusionIn conclusion, PHI possesses significant anti‐inflammatory properties and is expected to be a potential drug for UC treatment. Our study delves into the underlying mechanisms of PHI therapy and highlights the potential for further research in developing PHI‐based treatments for UC.
Funder
National Natural Science Foundation of China
Subject
Immunology,Immunology and Allergy
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献