Affiliation:
1. Institute of Marine Sciences, Fisheries Collaborative Program University of California Santa Cruz Santa Cruz California USA
2. National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Southwest Fisheries Science Center Santa Cruz California USA
3. The Metropolitan Water District of Southern California Sacramento California USA
4. School of Life Sciences University of Essex Colchester UK
5. Norwegian Institute for Nature Research Trondheim Norway
6. Center for Watershed Sciences University of California Davis Davis California USA
7. Physical and Life Sciences, Lawrence Livermore National Laboratory Livermore California USA
Abstract
AbstractPhenotypic diversity and abundance drive salmon resilience in the face of increasing environmental variability. But what happens when human activities fundamentally alter the habitat complexity that drives this diversity? And how can we restore habitats to recover both diversity and abundance to support salmon persistence in a warming climate? Here, we looked at the impact of a large watershed restoration effort on the abundance and climate resilience of the three remaining core natural spring‐run Chinook Salmon populations in the California Central Valley (Butte, Mill, and Deer Creek). Butte Creek fish, which have floodplain access, had higher overall productivity and faster juvenile growth compared with Mill and Deer Creek populations, and the proportion of floodplain inundation was positively correlated with Butte Creek adult abundance two years later. While Butte Creek exhibited significant increases in abundance post‐restoration (~2000%), it generally exhibited lower phenotypic diversity and only a marginal increase in population stability after restoration based on the coefficient of variation (CV). In particular, Butte Creek salmon tended to exhibit larger drops in escapement following dry years (e.g., return years 2010, 2017) compared with Mill and Deer Creek populations, presumably due to limited inundation of its downstream floodplain. The late‐migrating juvenile strategy (i.e., yearling), which disproportionately supported Mill and Deer Creek populations during droughts, was uncommon among Butte Creek adults (averaging 60% of returns for Mill and Deer Creek vs. 0.3% for Butte Creek). Increased spring‐run stock complex stability was found, post‐restoration, when combining the three spring‐run populations (i.e., lower aggregate CV). However, among‐river pairwise correlations also suggested increased synchronization in population abundances post‐restoration, potentially due to increasing frequency and severity of extreme climatic events (e.g., droughts and ocean warming). This study underscores the importance of restoring a connected mosaic of aquatic habitats across modified landscapes, such as cold water refugia and floodplains, to preserve multiple (across‐population) life history pathways for increasing salmon stock complex stability and abundance. These landscape‐scale process‐based habitat restoration efforts are likely to be crucial for the successful long‐term recovery of vulnerable species in a rapidly changing climate.
Funder
National Oceanic and Atmospheric Administration
California Department of Fish and Wildlife
Pacific Gas and Electric Company
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献