The nearest graph Laplacian in Frobenius norm

Author:

Sato Kazuhiro1,Suzuki Masato1

Affiliation:

1. Department of Mathematical Informatics, Graduate School of Information Science and Technology The University of Tokyo Tokyo Japan

Abstract

AbstractWe address the problem of finding the nearest graph Laplacian to a given matrix, with the distance measured using the Frobenius norm. Specifically, for the directed graph Laplacian, we propose two novel algorithms by reformulating the problem as convex quadratic optimization problems with a special structure: one based on the active set method and the other on direct computation of Karush–Kuhn–Tucker points. The proposed algorithms can be applied to system identification and model reduction problems involving Laplacian dynamics. We demonstrate that these algorithms possess lower time complexities and the finite termination property, unlike the interior point method and V‐FISTA, the latter of which is an accelerated projected gradient method. Our numerical experiments confirm the effectiveness of the proposed algorithms.

Funder

KAKENHI

Publisher

Wiley

Reference41 articles.

1. Graphs and Matrices

2. Kron reduction and effective resistance of directed graphs;Sugiyama T;SIAM J Matrix Anal Appl,2023

3. Lx = b, foundations and trends® in theoretical computer;Vishnoi NK;Science,2013

4. Laplacian Dynamics on General Graphs

5. A tutorial on modeling and analysis of dynamic social networks. Part I

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3