Integrated internal standards: A sample prep‐free method for better precision in microchip CE

Author:

Bidulock Allison C.E.12,Dubský Pavel2ORCID,van den Berg Albert1,Eijkel Jan C.T.1

Affiliation:

1. BIOS‐Lab on a Chip Group MESA+ Institute of Nanotechnology TechMed Centre and Max Planck Center for Complex Fluid Dynamics University of Twente Enschede Overijssel The Netherlands

2. Department of Physical and Macromolecular Chemistry Charles University in Prague Prague Czech Republic

Abstract

AbstractPoint‐of‐care systems based on microchip capillary electrophoresis require single‐use, disposable microchips prefilled with all necessary solutions so an untrained operator only needs to apply the sample and perform the analysis. While microchip fabrication can be (and has been) standardized, some manufacturing differences between microchips are unavoidable. To improve analyte precision without increasing device costs or introducing additional error sources, we recently proposed the use of integrated internal standards (ISTDs): ions added to the BGE in small concentrations which form system peaks in the electropherogram that can be used as a measurement reference. Here, we further expand this initial proof‐of‐principle test to study a clinically‐relevant application of K ion concentrations in human blood; however, using a mock blood solution instead of real samples to avoid interference from other obstacles (e.g. cell lysis). Cs as an integrated ISTD improves repeatability of K ion migration times from 6.97% to 0.89% and the linear calibration correlation coefficient (R2) for K quantification from 0.851 to 0.967. Peak area repeatability improves from 11.6–13.3% to 4.75–5.04% at each K concentration above the LOQ. These results further validate the feasibility of using integrated ISTDs to improve imprecision in disposable microchip CE devices by demonstrating their application for physiological samples.

Funder

Grantová Agentura České Republiky

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sensing of inorganic ions in microfluidic devices;Sensors and Actuators B: Chemical;2021-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3