Corridor quality buffers extinction under extreme droughts in experimental metapopulations

Author:

Li Dongbo1ORCID,Memmott Jane1,Clements Christopher F.1

Affiliation:

1. School of Biological Sciences University of Bristol Bristol UK

Abstract

AbstractCorridors with good‐quality habitats maintain the spatial dynamics of metapopulations by promoting dispersal between habitat patches, potentially buffering populations, and communities against continued global change. However, this function is threatened by habitats becoming increasingly fragmented, and habitat matrices becoming increasingly inhospitable, potentially reducing the resilience and persistence of populations. Yet, we lack a clear understanding of how reduced corridor quality interacts with rates of environmental change to destabilize populations. Using laboratory microcosms containing metapopulations of the Collembola Folsomia candida, we investigate the impact of corridor quality on metapopulation persistence under a range of simulated droughts, a key stressor for this species. We manipulated both drought severity and the number of patches affected by drought across landscapes connected by either good‐ or poor‐quality corridors. We measured the time of metapopulation extinction, the maximum rate of metapopulation decline, and the variability of abundance among patches as criteria to evaluate the persistence ability of metapopulations. We show that while drought severity negatively influenced the time of metapopulation extinction and the increase in drought patches caused metapopulation decline, these results were mitigated by good‐quality corridors, which increased metapopulation persistence time and decreased both how fast metapopulations declined and the interpatch variability in abundances. Our results suggest that enhancing corridor quality can increase the persistence of metapopulations, increasing the time available for conservation actions to take effect, and/or for species to adapt or move in the face of continued stress. Given that fragmentation increases the isolation of habitats, improving the quality of habitat corridors may provide a useful strategy to enhance the resistance of spatially structured populations.

Funder

China Scholarship Council

Publisher

Wiley

Subject

Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3