MicroRNA-204 Regulates Runx2 Protein Expression and Mesenchymal Progenitor Cell Differentiation

Author:

Huang Jian1,Zhao Lan2,Xing Lianping2,Chen Di1

Affiliation:

1. Department of Orthopaedics and Rehabilitation, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, USA

2. Department of Pathology and Laboratory Medicine, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, USA

Abstract

Abstract Differentiation of mesenchymal stem cells into a particular lineage is tightly regulated, and malfunction of this regulation could lead to pathological consequences. Patients with osteoporosis have increased adipocyte accumulation, but the mechanisms involved remain to be defined. In this study, we aimed to investigate if microRNAs regulate mesenchymal progenitor cells and bone marrow stromal cell (BMSC) differentiation through modulation of Runx2, a key transcription factor for osteogenesis. We found that miR-204 and its homolog miR-211 were expressed in mesenchymal progenitor cell lines and BMSCs and their expression was induced during adipocyte differentiation, whereas Runx2 protein expression was suppressed. Retroviral overexpression of miR-204 or transfection of miR-204 oligo decreased Runx2 protein levels and miR-204 inhibition significantly elevated Runx2 protein levels, suggesting that miR-204 acts as an endogenous attenuator of Runx2 in mesenchymal progenitor cells and BMSCs. Mutations of putative miR-204 binding sites upregulated the Runx2 3′-UTR reporter activity, suggesting that miR-204/211 bind to Runx2 3′-UTR. Perturbation of miR-204 resulted in altered differentiation fate of mesenchymal progenitor cells and BMSCs: osteoblast differentiation was inhibited and adipocyte differentiation was promoted when miR-204 was overexpressed in these cells, whereasosteogenesis was upregulated and adipocyte formation was impaired when miR-204 was inhibited. Together, our data demonstrated that miR-204/211 act as important endogenous negative regulators of Runx2, which inhibit osteogenesis and promote adipogenesis of mesenchymal progenitor cells and BMSCs.

Funder

New York State Department of Health and the Empire State Stem Cell Board

National Institute of Health

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

Cited by 487 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3