Generation of Molecular Counterfactuals for Explainable Machine Learning Based on Core‐Substituent Recombination

Author:

Lamens Alec1,Bajorath Jürgen12ORCID

Affiliation:

1. Department of Life Science Informatics and Data Science B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry Rheinische Friedrich-Wilhelms-Universität Friedrich-Hirzebruch-Allee 5/6 53115 Bonn Germany

2. Lamarr Institute for Machine Learning and Artificial Intelligence Rheinische Friedrich-Wilhelms-Universität Bonn Friedrich-Hirzebruch-Allee 5/6 53115 Bonn Germany

Abstract

AbstractThe use of black box machine learning models whose decisions cannot be understood limits the acceptance of predictions in interdisciplinary research and camouflages artificial learning characteristics leading to predictions for other than anticipated reasons. Consequently, there is increasing interest in explainable artificial intelligence to rationalize predictions and uncover potential pitfalls. Among others, relevant approaches include feature attribution methods to identify molecular structures determining predictions and counterfactuals (CFs) or contrastive explanations. CFs are defined as variants of test instances with minimal modifications leading to opposing predictions. In medicinal chemistry, CFs have thus far only been little investigated although they are particularly intuitive from a chemical perspective. We introduce a new methodology for the systematic generation of CFs that is centered on well‐defined structural analogues of test compounds. The approach is transparent, computationally straightforward, and shown to provide a wealth of CFs for test sets. The method is made freely available.

Publisher

Wiley

Subject

Organic Chemistry,General Pharmacology, Toxicology and Pharmaceutics,Molecular Medicine,Drug Discovery,Biochemistry,Pharmacology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3