Mitochondria‐Targeting Metallodrugs for Cancer Therapy: Perspectives from Cell Death Modes

Author:

Li Hao‐Ming1,Wang Meng‐Meng12,Su Yan13,Fang Hong‐Bao1,Su Zhi1ORCID

Affiliation:

1. Jiangsu Collaborative Innovation Center of Biomedical Functional Materials College of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 P. R. China

2. Key Laboratory of Innovative Applications of Bioresources and Functional Molecules of Jiangsu Province College of Life Science and Chemistry Jiangsu Second Normal University Nanjing 210013 P. R. China

3. Department of Rheumatology and Immunology Jinling Hospital Medical School of Nanjing University Nanjing 210002 P. R. China

Abstract

AbstractMitochondria, recognized as the cellular powerhouses, are indispensable organelles responsible for crucial cellular processes, such as energy metabolism, material synthesis, and signaling transduction. Their intricate involvement in a broad spectrum of diseases, particularly cancer, has propelled the exploration of mitochondria‐targeting treatment as a promising strategy for cancer therapy. Since the groundbreaking discovery of cisplatin, the trajectory of research on the development of metal complexes have been marked by continuous advancement, giving rise to a diverse array of metallodrugs characterized by variations in ligand types, metal center properties, and oxidation states. By specifically targeting mitochondria, these metallodrugs exhibit the remarkable ability to elicit various programmed cell death pathways, encompassing apoptosis, autophagy, and ferroptosis. This review primarily focuses on recent developments in transition metal‐based mitochondria‐targeting agents, offering a comprehensive exploration of their capacity to induce distinct cell death modes. The aim is not only to disseminate knowledge but also to stimulate an active field of research toward new clinical applications and novel anticancer mechanisms.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3