Relationship between recovered enthalpy and the shape‐memory effect in shape memory polymers

Author:

Siwakoti Midhan1ORCID,Mailen Russell W.1ORCID

Affiliation:

1. Department of Aerospace Engineering Auburn University Auburn Alabama USA

Abstract

AbstractShape memory polymers (SMPs) maintain a temporary shape after pre‐straining, wherein the polymer chains are constrained in a non‐equilibrium thermodynamic state. Physical aging lowers the chain conformational energy, which affects the mechanical properties. Herein, we investigate the relationship between physical aging and the shape recovery of SMP sheets, whereas both processes involve motion of polymer chains. We induce conformational changes to polymer chains either by physical aging or via a thermomechanical pre‐straining process. We then quantify structural relaxation via recovered enthalpy measurements using modulated differential scanning calorimetry (MDSC), and the shape recovery performance using dynamic mechanical analysis (DMA). We vary pre‐straining holding time, amount, and rate and observe the relationship between physical aging, recovered enthalpy, and the shape recovery performance. The results indicate that an increase in recovered enthalpy correlates with an increase in characteristic shape recovery time. Further, a maximum decrease in recovery time of 65% is observed at the highest strain rate, and only small amounts of recovered enthalpy occur for aging times longer than 16 h. The results provide insight into the relationship between physical aging and its effects on shape memory, which is important for applications requiring storage for long durations.

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3