Single‐Pot Synthesis and Optimization of CCF@GO Nanocatalyst for Efficient Direct Oxidative Amidation of Carboxylic Acids and N,N‐Dialkylformamides

Author:

Pawar Mahesh A.1,Nakhate Akhil V.2,Ugemuge Priti V.2,Kadu Samidha S.1,Tekade Pradip V.2

Affiliation:

1. Shri Shivaji College of Arts Commerce and Science Akola India

2. Bajaj College of Science Wardha India

Abstract

ABSTRACTIn this study, an efficient catalytic protocol using CuCoFe2O4@GO (CCF@GO) for the synthesis of amide bond (−CONH−) via direct coupling of carboxylic acids and N,N‐dialkylformamides is presented. The CCF@GO nanocatalyst has been synthesized via a single‐pot solvothermal method, by changing the proportions of copper and cobalt (1:1, 1:3, and 3:1). Catalyst screening, employing a model reaction with benzoic acid and dimethylformamide (DMF), revealed that the 1:1 proportion of CCF@GO catalyst exhibited excellent efficiency, achieving a high conversion (98%) towards amide formation. The enhanced catalytic efficiency observed in CCF@GO catalysts can be ascribed to the uniform distribution of active copper and cobalt species on the graphene oxide support, which possesses a high surface area. Optimization of the reaction was conducted by varying parameters such as temperature, solvent, catalyst loading, and oxidant. The prepared catalyst was characterized using various analytical techniques including XRD, FTIR, XPS, SEM, EDX mapping, and TEM. Furthermore, this heterogeneous nanocatalyst demonstrated recoverability using an external magnet and reused up to five times with just a modest loss of catalytic performance.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3