The design and characterization of a novel dynamic collimator system for synchrotron radiotherapy applications

Author:

Barnes Micah J.123,Afshar Nader2,Cameron Matthew2,Hausermann Daniel2,Hardcastle Nicholas3,Lerch Michael1

Affiliation:

1. Centre for Medical Radiation Physics University of Wollongong Wollongong New South Wales Australia

2. ANSTO Australian Synchrotron Clayton Victoria Australia

3. Physical Sciences Peter MacCallum Cancer Centre Melbourne Victoria Australia

Abstract

AbstractBackgroundNovel synchrotron radiotherapy techniques are currently limited to using prefabricated beam‐limiting blocks for field definition. For large experiments, a single square tungsten block is often used for every treatment since conformal blocks are both patient and field specific, and require long lead times for fabrication. Future synchrotron radiotherapy treatments would benefit from a dynamic collimator system.PurposeWe developed and tested a novel collimator design for use on the Imaging and Medical Beamline (IMBL) at the ANSTO Australian Synchrotron.MethodsThe maximum usable beam size on IMBL is 50‐mm wide by 3‐mm tall. Given the beam shape, targets must be vertically scanned through the synchrotron beam to cover the target volume. To shape the beam, a novel collimator design was developed, consisting of two semi‐circular leaves made from 4‐mm thick tungsten sheets, with each leaf capable of both vertical and horizontal movement. A software model was created to optimize motor trajectories and generate deliverable treatment fields. A series of geometric field shapes and clinical target volumes were delivered using the collimator and imaged with a digital imaging detector. Four similarity metrics (volumetric similarity, DICE, and the average and maximum Hausdorff distances) were used to measure differences between the input and planned fields, and the planned and delivered fields.ResultsDifferences between input and planned fields increased with delivery speed, and were worse for rectangular and square fields compared to circular fields. However, the differences between planned and delivered fields were small, where the maximum average deviation between the fields was 0.25 mm (one pixel). Field repeatability was consistent with no difference (σ = 0 for all metrics) observed in consecutively delivered fields.ConclusionsWe have successfully built and demonstrated a novel collimator for synchrotron radiotherapy applications on IMBL. Several design improvements have been highlighted and will be addressed in future revisions the collimator. However, in its current state, the collimator enables dynamically delivered conformal treatment fields to be utilized on IMBL, and is ready to support the forthcoming canine treatments on IMBL.

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3