Sequentially crosslinked collagen‐based hydrogel to form a semi‐interpenetrating network for enhanced stability to hydrolytic degradation and electrochemical properties

Author:

Nur Hidayah Shahemi1ORCID,Dania Adila Ahmad Ruzaidi1ORCID,Sharaniza Ab Rahim2ORCID,Muhammad Abid Amir2ORCID,Mohd Muzamir Mahat1ORCID

Affiliation:

1. Faculty of Applied Sciences Universiti Teknologi MARA Shah Alam Malaysia

2. Faculty of Medicine Universiti Teknologi MARA Sungai Buloh Malaysia

Abstract

AbstractBiodegradable polymers are pivotal in tissue engineering, facilitating long‐term tissue reintegration and reducing the necessity for surgery. However, collagen, a crucial component of the extracellular matrix, encountered challenges due to its limited mechanical strength and rapid in‐vivo degradation. This study addresses these issues through crosslinking and functionalizing collagen with synthetic 4‐arm amine‐terminated polyethylene glycol (PEG) in a semi‐interpenetrating network (IPN) hydrogel. The first goal is to enhance resistance to hydrolysis, thus extending the biodegradation rate. Then, to explore its electrical conductivity properties for certain applications like neural tissue regeneration. The hydrogels were fabricated using sequential IPN formation synthesis where their structural stability and type of degradation by‐products were confirmed using Fourier‐transform infrared spectroscopy (FTIR), Raman spectroscopy, scanning electron microscopy (SEM), and nuclear magnetic resonance (NMR). Next, its mechanical and degradation properties investigations exhibit a 92% enhancement in hardness and a 90% retainment of its initial mass over time under physiological conditions. Additionally, the introduction of polypyrrole (PPy) via in‐situ polymerization increases its electrical conductivity, achieving a remarkable 104‐fold increase at a 0.75 M concentration, attributed to the interconnectivity of PPy chain networks within the three‐dimensional structure of IPN collagen/PEG hydrogel. The increased PPy concentration improves conductivity and reduces energy requirements for redox reactions, ensuring electrochemical stability as revealed by cyclic voltammetry analysis. The demonstrated structural and electrochemical stability of the semi‐IPN collagen/PEG/PPy hydrogel within a physiological environment through a facile sequential crosslinking method underscores its promising practical applications in enhancing clinical effectiveness.

Funder

Universiti Teknologi MARA

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3