Affiliation:
1. School of Environmental and Municipal Engineering, Qingdao University of Technology Qingdao China
2. Qingdao New Energy Shandong Laboratory, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences Qingdao China
3. Shandong Energy Institute Qingdao China
Abstract
AbstractBacteria and macroalgae share an inseparable relationship, jointly influencing coastal ecosystems. Within macroalgae habitats, Planctomycetota, a group of bacteria notoriously challenging to cultivate, often dominate. However, the mechanisms facilitating their persistence in this environment remain unclear. Here, we successfully isolated a novel Planctomycetota bacterium, Stieleria sp. HD01, from the surface of kelp. We demonstrated that HD01 possesses a robust ability to metabolize fucoidan, which constitutes half of the kelp‐derived organic carbon and exhibits resistance to attack by most microorganisms. Moreover, HD01 can utilize a broad spectrum of other organics, indicating its metabolic versatility and competitive prowess within algal environments. Additionally, HD01 can secrete antagonistic substances against other bacteria, form biofilms, and employ superoxide dismutase and catalase to resist oxidative stress, further consolidating its ecological fitness. Comparative metagenomics analysis suggested that Planctomycetota may have a mutually beneficial relationship with kelp.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Taishan Scholar Foundation of Shandong Province