Affiliation:
1. Department of Hydrogenation Catalyst Sinopec Research Institute of Petroleum Processing 18 Xueyuan Road Beijing P.R. China
2. Department of chemical engineering Beijing University of Chemical Technology 15 Beisanhuan East Road Beijing P.R. China
3. State Key Laboratory of Fine Chemicals Dalian University of Technology NO.2, Linggong Road Dalian Liaoning Province P.R. China
Abstract
AbstractIdentifying the unnecessary H2 consumption existing in diesel hydrotreating process and calculating theoretical minimum H2 consumption are extremely critical for reducing H2 consumption in consideration of carbon reduction and resource utilization improvement. In this work, chemical reactions happened during diesel hydrotreating were categorized into hydrodesulfurization (HDS), hydrodenitrogenation (HDN), saturation of monocyclic aromatic hydrocarbons (MAHs), saturation of polycyclic aromatic hydrocarbons (PAHs), hydrogenation of olefins (HGO) and hydrocracking reactions (HCR). Then, in order to gain insights into where and how much H2 can be reduced, the ideal molecular compositions of the products were analyzed when theoretical minimum H2 was achieved for each type of reactions, which can give a genuine value of average relative molecular weight and average number of moles of H2 consumed per mole of reactants, leading to the establishment of method for calculating theoretical minimum H2 consumption. Additionally, the above method was used to calculate theoretical minimum H2 consumption of five diesel feedstocks with different properties to study the influence of content of S, N and PAHs in the feed on theoretical minimum H2 consumption. This method can provide guidance for experiments of H2 consumption reduction, and also help the refineries to save potential costs of H2.