A Supramolecular Nanovehicle Featuring a pH/Enzyme Co‐Response for Targeted Delivery of the Antitumor Compound

Author:

Nie Zhengquan1,Zhu Fangdao1,Chen Shuai1,Xu Junxin1,Yang Jianmei1,He Junnan1,Liu Xiaoqing2,Zhao Yan1ORCID,Zhang Jin1

Affiliation:

1. College of Chemistry and Chemical Engineering Yunnan Normal University Kunming 650500 P. R. China

2. Shenzhen Kewode Technology Co., Ltd Shenzhen 518028 P. R. China

Abstract

AbstractTriptolide (TPL) has gained much attention as an antitumor compound with potential applications. However, TPL suffers from low bioavailability, severe toxic side effects, and limited targeted uptake by tumor cells, thus restricting the conversion of its clinical application. Here, a supramolecular nanovehicle, named TSCD/MCC NPs, featuring pH/AChE co‐response was designed and prepared for loading, delivery, and targeted release of TPL. The cumulative release rate of TPL from TPL@TSCD/MCC NPs reached ∼90 % within 60 h at pH 5.0 and AChE co‐stimulation. Bhaskar model is used to study TPL release procedure. In cell experiments, TPL@TSCD/MCC NPs showed high toxicity to the four tumor cells lines A549, HL‐60, MCF‐7, and SW480, and favorable biosafety to normal cells BEAS‐2B. Furthermore, TPL@TSCD/MCC NPs containing relatively small amounts of TPL presented similar apoptosis rates to those of intrinsic TPL. We anticipate that TPL@TSCD/MCC NPs may facilitate the conversion of TPL into clinical applications through further studies.

Publisher

Wiley

Subject

General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3