Zwitterionic Materials for Enhanced Battery Electrolytes

Author:

Alsaedi Mossab K.1,Like Bricker D.1,Wieck Karl W.1,Panzer Matthew J.1ORCID

Affiliation:

1. Department of Chemical & Biological Engineering Tufts University 4 Colby Street Medford MA 02155 USA

Abstract

AbstractZwitterions (ZIs), which are molecules bearing an equal number of positive and negative charges and typically possessing large dipole moments, can play an important role in improving the characteristics of a wide variety of novel battery electrolytes. Significant Coulombic interactions among ZI charged groups and any mobile ions present can lead to several beneficial phenomena within electrolytes, such as increased salt dissociation, the formation of ordered pathways for ion transport, and enhanced mechanical robustness. In some cases, ZI additives can also boost electrochemical stability at the electrolyte/electrode interface and enable longer battery cycling. Here, a brief summary of selected key historical and recent advances in the use of ZI materials to enrich the performance of three distinct classes of battery electrolytes is presented. These include: ionic liquid‐based, conventional solvent‐based, and solid matrix‐based (non‐ceramic) electrolytes. Exploring a greater chemical diversity of ZI types and electrolyte pairings will likely lead to more discoveries that can empower next‐generation battery designs in the years to come.

Funder

National Science Foundation

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3