Anion‐π Interactions: What's in the Name?

Author:

Rosokha Sergiy V.1ORCID

Affiliation:

1. Chemistry Department Ball State University Muncie IN 47306 USA

Abstract

AbstractThe studies of the anion‐π interactions advanced during the last two decades from the discussion of the mere existence of this counter‐intuitive bonding to its utilization for anion recognition and transport, catalysis, and other applications. Yet, there are substantial differences in the interpretation of nature and the driving forces of anion‐π bonding. Most surprisingly, there are still different opinions about the meaning of this term (i. e., which associations can be considered anion‐π complexes). After a brief overview of the studies in this area (including early examples of such complexes), we suggested that anion‐π bonding occurs when there is evidence of a net attraction between a (close‐shell) anion and the face of an electrophilic π‐system. This definition encompasses fundamentally similar supramolecular complexes comprising diverse π‐systems and anions and its general acceptance would facilitate a discussion of the nature and distinct driving forces of this fascinating interaction.

Funder

National Science Foundation

Publisher

Wiley

Subject

General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3