Enhancing Hydrogen Production from the Photoreforming of Lignin

Author:

Aljohani Meshal12,Daly Helen1,Lan Lan1,Mavridis Aristarchos1,Lindley Matthew3,Haigh Sarah J.3,D'Agostino Carmine1,Fan Xiaolei1,Hardacre Christopher1ORCID

Affiliation:

1. Department of Chemical Engineering The University of Manchester Oxford Road Manchester M13 9PL UK

2. The Center of Excellence for Advanced Materials and Manufacturing King Abdulaziz City for Science and Technology Riyadh 11442 Saudi Arabia

3. Department of Materials The University of Manchester Oxford Road Manchester M13 9PL UK

Abstract

AbstractPhotoreforming of lignocellulose biomass is widely recognised as a challenging but key technology for producing value‐added chemicals and renewable hydrogen (H2). In this study, H2 production from photoreforming of organosolv lignin in a neutral aqueous solution was studied over a 0.1 wt % Pt/TiO2 (P25) catalyst with ultraviolet A (UVA) light. The H2 production from the system employing the lignin (~4.8 μmol gcat−1 h−1) was comparable to that using hydroxylated/methoxylated aromatic model compounds (i. e., guaiacol and phenol, 4.8–6.6 μmol gcat−1 h−1), being significantly lower than that from photoreforming of cellulose (~62.8 μmol gcat−1 h−1). Photoreforming of phenol and reaction intermediates catechol, hydroquinone and benzoquinone were studied to probe the mechanism of phenol oxidation under anaerobic photoreforming conditions with strong adsorption and electron transfer reactions lowering H2 production from the intermediates relative to that from phenol. The issues associated with catalyst poisoning and low photoreforming activity of lignins demonstrated in this paper have been mitigated by implementing a process by which the catalyst was cycled through anaerobic and aerobic conditions. This strategy enabled the periodic regeneration of the photocatalyst resulting in a threefold enhancement in H2 production from the photoreforming of lignin.

Funder

King Abdulaziz City for Science and Technology

UK Catalysis Hub

Henry Royce Institute

Publisher

Wiley

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3