Dynamic Covalent Reactions and Chirality Sensing with Diphenylethene Derived Hemiaminals

Author:

Jiang Guoshan123,Wang Lifeng24,Ye Hebo12,Zou Hanxun12,You Lei123ORCID

Affiliation:

1. Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 China

2. State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China

3. University of Chinese Academy of Sciences Beijing 100049 China

4. College of Chemistry and Material Science Fujian Normal University Fuzhou 350007 China

Abstract

AbstractThe differentiation of enantiomers is of significance in synthetic chemistry and pharmaceutical chemistry. Herein, we report a facile method for chirality sensing of monoalcohols, a challenging target due to the poor reactivity, by combining dynamic covalent chemistry with helical chirality. Four diphenylethene (DPE) derived cyclic hemiaminals were constructed, and the incorporation of a broad range of alcohols and thiols with high efficiency was achieved. The reversibility was further verified by dynamic component exchange. The helical chirality of the DPE motif was induced through chirality transfer by the central chirality of the analytes, resulting in circular dichroism responses. The chirality differentiation of seven chiral secondary alcohols including both alkyl and aryl alcohols was realized, further allowing the quantification of enantiomeric excess with high accuracy. The results described should lay a foundation for future endeavors in chemical sensing, asymmetric synthesis, and chiroptical materials.

Funder

National Natural Science Foundation of China

Chinese Academy of Sciences

Natural Science Foundation of Fujian Province

Publisher

Wiley

Subject

General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3