Hollow Polyethyleneimine Nanoparticles with Drug Loaded DNA for Chemotherapeutic Applications

Author:

Rucci Brendan1,Boyle Brian1,Byrne Mark12ORCID

Affiliation:

1. Department of Biomedical Engineering Rowan-Virtua School of Translational Biomedical Engineering & Sciences Rowan University Glassboro NJ 08028 USA

2. Department of Chemical Engineering Rowan University Glassboro NJ 08028 USA

Abstract

AbstractThe next generation of anticancer agents are emerging from rationally designed nanostructured materials. This work involved the synthesis and characterization of novel hollow DNA‐conjugated gold nanoparticles (DNA−AuNPs) for controlled drug delivery. Polyethyleneimine (PEI) was bound to AuNPs, forming polymer‐shell nanoparticles. Dissolution of the gold core via iodine formed hollow core polymeric nanoparticles (HCPNPs) and a high density (85 molecules/particle) of DNA intercalated with daunorubicin was conjugated. Particles were spherical with an average diameter of 105.7±17.3 nm and zeta potential of 20.4±3.54 mV. We hypothesize the DNA backbone electrostatically condensed to the primary amines on the surface of the particle toroidally, weaving itself within the polymer shell. During the DNA intercalation process, increasing the ionic concentration and decreasing the amine/phosphate ratio 10‐fold increased drug intercalation 64 % and 61 %, respectively, allowing us to determine the optimal method of particle synthesis. As intercalation sites increased with increasing DNA strand length, drug loading increased. An average of 874±40.1 daunorubicin molecules were loaded per HCPNP. HCPNPs with drug intercalated DNA have strong potential to be clinically efficacious drug delivery vehicles due to the versatility of DNA and high drug loading capacities.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3