Transformation of CO2 to Carbon Nanotubes by Catalytic Chemical Vapor Deposition using a Metal‐Supported Hierarchical Zeolite Template

Author:

Nunthakitgoson Watinee1ORCID,Rodaum Chadatip1ORCID,Pornsetmetakul Peerapol1ORCID,Wattanakit Chularat1ORCID,Wattana Piyarat2,Thivasasith Anawat1ORCID

Affiliation:

1. Department of Chemical and Biomolecular Engineering School of Energy Science and Engineering Vidyasirimedhi Institute of Science and Technology Rayong 21210 Thailand

2. PTT Exploration and Production Public Company Limited Bangkok 10900 Thailand

Abstract

AbstractThe conversion of CO2 into valuable substances is a topic of great interest in current research. Carbon nanotubes (CNT) have emerged as highly promising materials for CO2 conversion. In this study, we successfully developed a catalyst by loading active transition metals (Fe or Ni) onto hierarchical zeolite for CNT synthesis. Our catalyst demonstrated excellent performance under synthetic conditions. The most favorable CNT was obtained using the 25 wt.% FeHieFAU catalyst, which exhibited a diameter size of 23.1 nm, a CNT yield of 15.4 %, and an ID/IG ratio of 0.56, indicating high quality. Additionally, we investigated the beneficial effects of the synthesized CNT by testing their current response. Notably, the current response of the synthesized CNT surpassed that of commercial CNT when using a 0.5 M H2SO4 supporting electrolyte and cyclic voltammetry (V vs. Ag/AgCl). These findings highlight the significant contributions of the small diameter and superior quality of our synthesized pure CNT, which offer potential improvements in current response compared to commercial CNT. This research opens new avenues for utilizing CNT in CO2 conversion and electrochemical applications.

Funder

Vidyasirimedhi Institute of Science and Technology

Publisher

Wiley

Subject

General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3