Impact of Porous Silica Nanosphere Architectures on the Catalytic Performance of Supported Sulphonic Acid Sites for Fructose Dehydration to 5‐Hydroxymethylfurfural

Author:

Price Cameron‐Alexander H.123,Torres‐Lopez Antonio123ORCID,Evans Robert4ORCID,Hondow Nicole S.5ORCID,Isaacs Mark A.67ORCID,Jamal Aina Syahida123,Parlett Christopher M. A.1238ORCID

Affiliation:

1. Department of Chemical Engineering The University of Manchester Manchester M13 9PL UK

2. UK Catalysis Hub Research Complex at Harwell Rutherford Appleton Laboratory Oxfordshire OX11 0FA UK

3. University of Manchester at Harwell Oxfordshire OX11 0DE UK

4. Aston Institute of Materials Research Aston University Birmingham B4 7ET UK

5. School of Chemical and Process Engineering University of Leeds Leeds LS2 9JT UK

6. HarwellXPS Research Complex at Harwell Rutherford Appleton Lab Didcot OX11 0FA UK

7. Department of Chemistry University College London London WC1H 0AJ UK

8. Diamond Light Source Harwell Science and Innovation Campus Oxfordshire OX11 0DE UK

Abstract

Abstract5‐hydroxymethylfurfural represents a key chemical in the drive towards a sustainable circular economy within the chemical industry. The final step in 5‐hydroxymethylfurfural production is the acid catalysed dehydration of fructose, for which supported organoacids are excellent potential catalyst candidates. Here we report a range of solid acid catalysis based on sulphonic acid grafted onto different porous silica nanosphere architectures, as confirmed by TEM, N2 porosimetry, XPS and ATR‐IR. All four catalysts display enhanced active site normalised activity and productivity, relative to alternative silica supported equivalent systems in the literature, with in‐pore diffusion of both substrate and product key to both performance and humin formation pathway. An increase in‐pore diffusion coefficient of 5‐hydroxymethylfurfural within wormlike and stellate structures results in optimal productivity. In contrast, poor diffusion within a raspberry‐like morphology decreases rates of 5‐hydroxymethylfurfural production and increases its consumption within humin formation.

Funder

Engineering and Physical Sciences Research Council

Publisher

Wiley

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3