Nature and Redox Properties of Iron Sites in Zeolites Revealed by Mössbauer Spectroscopy

Author:

Kornas Agnieszka1,Mlekodaj Kinga1ORCID,Tabor Edyta1ORCID

Affiliation:

1. Structure and Dynamics in Catalysis J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences Dolejškova 2155/3 182 23 Prague 8 Czech Republic

Abstract

AbstractIron‐containing zeolite‐based catalysts play a pivotal role in environmental processes aimed at mitigating the release of harmful greenhouse gases, such as nitrous oxide (N2O) and methane (CH4). Despite the rich iron chemistry in zeolites, only a fraction of iron species that exhibit an open coordination sphere and possess the ability for electron transfer are responsible for activating reagents. In addition, the splitting of molecular oxygen is facilitated by bare iron cations embedded in zeolitic matrices. Mössbauer spectroscopy is the ideal tool for investigating the valency and geometry of iron species in zeolites because it leaves no iron forms silent and provides insights into in‐situ processes. This review is dedicated to the utilization of Mössbauer spectroscopy to elucidate the nature of the extra‐framework iron centers in ferrierite (FER), beta‐structured (*BEA), and ZSM‐5 zeolite (MFI) zeolites, which are active in N2O decomposition and CH4 oxidation through using the active oxygen derived from N2O and O2. In this work, a structured summary of the Mössbauer parameters established over the last two decades is presented, characterizing the specific iron active centers and intermediates formed upon iron's interaction with N2O/O2 and CH4. Additionally, the impact of preparation methods, iron loading, and the long‐term stability on iron speciation and its redox behavior under reaction conditions is discussed.

Funder

Grantová Agentura České Republiky

Publisher

Wiley

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3