Application of bivariate statistical techniques for landslide susceptibility mapping: A case study in Kaghan Valley, NW Pakistan

Author:

Tanoli Javed Iqbal1,Jehangir Adeel1,Qasim Muhammad1ORCID,Rehman Mohib ur1,Shah Syed Tallataf Hussain1,Ali Muhammad1,Jadoon Ishtiaq Ahmad Khan1

Affiliation:

1. Department of Earth Sciences COMSATS University Islamabad Abbottabad Pakistan

Abstract

Landslides are dangerous events that threaten both human life and property. This research presents a case study of Kaghan valley catchment, which is an area of frequent landslide activity. We aim to present a comparison between the bivariate Landslide Numerical Risk Factor (LNRF), Statistical Index (SI) and Information Value (InfV) statistical models to evaluate landslide susceptibility. A total of 1556 landslides were identified using earlier reports, field surveys, and GOOGLE Earth imagery. The abundance of landslides is primarily controlled by acute deformation caused by a major thrust fault system and proximity to Hazara Kashmir Syntaxis (HKS). A landslide inventory was randomly partitioned into two datasets. 70% (1106) of landslides were used as a training phase of the models, whereas 30% (450) as validation of the three models. A spatial database of 11 conditioning factors was produced consisting of slope, aspect, elevation, lithology, land use, Topographic Wetness Index (TWI), rainfall, Stream Power Index (SPI), distance to faults, rivers and streams. All the landslide susceptibility assessment parameters were obtained from different sources and different landslide susceptibility maps were prepared on the GIS software. Performance of the three models was validated through the Receiver operator Characteristics (ROC) through success and prediction rate curves. Results show that the area under the ROC curve (AUC) for InfV, LNRF and SI models are 70.95, 83.99 and 67.56 for success rate curves and 70.75, 83.99 and 67.85 for prediction rate curves, respectively. LNRF having the highest AUC value proved to be superior for generating regional scale landslide susceptibility maps.

Funder

Pakistan Science Foundation

National Natural Science Foundation of China

Publisher

Wiley

Subject

Geology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3