PAQR3 facilitates the ferroptosis of diffuse large B‐cell lymphoma via the regulation of LDLR‐mediated PI3K/AKT pathway

Author:

Song Xiangxiang1,Zhang Weiming1,Yu Nasha1,Zhong Xing1ORCID

Affiliation:

1. Departments of Lymphatic and Hematological Oncology Jiangxi Cancer Hospital (The Second Affiliated Hospital of Nanchang Medical College) Nanchang City China

Abstract

AbstractProgesterone and adiponectin receptor 3 (PAQR3) has been found to regulate tumor progression by mediating cell ferroptosis. However, whether PAQR3 mediates ferroptosis in diffuse large B‐cell lymphoma (DLBCL) needs further investigation. The mRNA and protein levels of PAQR3 and low‐density lipoprotein receptor (LDLR) were assessed by qRT‐PCR and WB assays. Cell proliferation was detected by MTT assay and EdU assay. Shrunken mitochondria was counted under transmission electron microscope. Cell ferroptosis was evaluated by measuring the levels of malondialdehyde, reactive oxygen species, glutathione, Fe2+, and the protein expression of ferroptosis‐related markers. PAQR3 and LDLR interaction was confirmed by RIP assay and pull‐down assay. Our study showed that PAQR3 was underexpressed, while LDLR was overexpressed in DLBCL tissues and cells. Functionally, PAQR3 overexpression or LDLR knockdown restrained DLBCL cell proliferation and enhanced ferroptosis. Mechanistically, PAQR3 reduced LDLR expression by inhibiting its mRNA stability. Meanwhile, LDLR overexpression reversed PAQR3‐mediated the promoting on DLBCL cell ferroptosis, and LY294002 (PI3K/AKT inhibitor) eliminated the inhibiting effects of LDLR overexpression on DLBCL cell ferroptosis. Additionally, excessive PAQR3 reduced DLBCL tumor growth by enhancing tumor cell ferroptosis through LDLR‐mediated PI3K/AKT pathway. In conclusion, our data suggested that PAQR3 restrained DLBCL progression by aggravating ferroptosis, which was achieved by inhibiting LDLR expression to repress PI3K/AKT pathway.

Publisher

Wiley

Subject

Cancer Research,Oncology,Hematology,General Medicine

Reference18 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3